3.656 \(\int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{2 a \sin (c+d x) \sqrt{\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}-\frac{2 \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(-2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/((a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(
a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.164182, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3844, 21, 3856, 2655, 2653} \[ \frac{2 a \sin (c+d x) \sqrt{\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}-\frac{2 \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/((a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(
a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3844

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a*d^2
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2))/(f*(m + 1)*(a^2 - b^2)), x] - Dist[d^2/((
m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Lt
Q[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx &=\frac{2 a \sqrt{\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{2 \int \frac{-\frac{a}{2}-\frac{1}{2} b \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac{2 a \sqrt{\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}-\frac{\int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac{2 a \sqrt{\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}-\frac{\sqrt{a+b \sec (c+d x)} \int \sqrt{b+a \cos (c+d x)} \, dx}{\left (a^2-b^2\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{2 a \sqrt{\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}-\frac{\sqrt{a+b \sec (c+d x)} \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=-\frac{2 E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{\left (a^2-b^2\right ) d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{2 a \sqrt{\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.294343, size = 103, normalized size = 0.82 \[ -\frac{2 \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+b) \left ((a+b) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )-a \sin (c+d x)\right )}{d (a-b) (a+b) (a+b \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*((a + b)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2,
 (2*a)/(a + b)] - a*Sin[c + d*x]))/((a - b)*(a + b)*d*(a + b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.253, size = 501, normalized size = 4. \begin{align*} -2\,{\frac{ \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{3/2} \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{d \left ( a+b \right ) \left ( b+a\cos \left ( dx+c \right ) \right ) \sin \left ( dx+c \right ) } \left ( \cos \left ( dx+c \right ) \sin \left ( dx+c \right ){\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }\sqrt{{\frac{a-b}{a+b}}}},\sqrt{-{\frac{a+b}{a-b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( \cos \left ( dx+c \right ) +1 \right ) }}}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}-\cos \left ( dx+c \right ) \sin \left ( dx+c \right ){\it EllipticE} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }\sqrt{{\frac{a-b}{a+b}}}},\sqrt{-{\frac{a+b}{a-b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( \cos \left ( dx+c \right ) +1 \right ) }}}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}+{\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }\sqrt{{\frac{a-b}{a+b}}}},\sqrt{-{\frac{a+b}{a-b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( \cos \left ( dx+c \right ) +1 \right ) }}}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) -{\it EllipticE} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }\sqrt{{\frac{a-b}{a+b}}}},\sqrt{-{\frac{a+b}{a-b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( \cos \left ( dx+c \right ) +1 \right ) }}}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) +\sqrt{{\frac{a-b}{a+b}}}\cos \left ( dx+c \right ) -\sqrt{{\frac{a-b}{a+b}}} \right ) \sqrt{{\frac{b+a\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{{\frac{a-b}{a+b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-2/d/((a-b)/(a+b))^(1/2)/(a+b)*(cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)-cos(d*x+c)*sin
(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)+EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(
a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-Ellipti
cE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+((a-b)/(a+b))^(1/2)*cos(d*x+c)-((a-b)/(a+b))^(1/2))*((b+a*cos(d*
x+c))/cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(3/2)*cos(d*x+c)^2/(b+a*cos(d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{3}{2}}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(3/2)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(3/2), x)